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Algebra is the fundamental language of mathematics. It enables us to create a math-
ematical model of a situation, provides the mathematical structure necessary to use
the model to solve problems, and links numerical and graphical representations of
data. Algebra is the vehicle for condensing large amounts of data into efficient math-
ematical statements.

As we move into the twenty-first century, there is a great deal of concern about
how much algebra today’s students need to know to be successful in the workplace.
While experts differ about the specifics, they agree that instruction that includes
algebra and algebraic thinking is necessary for everyone: “It is essential for students
to learn algebra as a style of thinking involving the formalization of patterns, func-
tions, and generalizations, and as a set of competencies involving the representation
of quantitative relationships” (Silver 1997, 206).

While the formal study of algebra usually occurs in grades 8 through 10, research
has shown that elementary students can think about arithmetic in ways that provide
a foundation for learning algebra. In fact, introducing basic forms of algebraic think-
ing into instruction in the elementary grades has been shown to enhance students’
learning of arithmetic (Carpenter et al. 2003). Researchers suggest that there are
three processes that when applied to a mathematical task support the development
of students’ algebraic reasoning: generalizing, formalizing, and justifying.

Generalizing is the process of developing a general mathematical statement about
the structure, properties, or relationships that underlie a mathematical idea.

Formalizing is the process of representing the mathematical generalizations in some
sort of formal way. Students progress in their ability to represent ideas formally—
from talking about them in everyday language; to increasingly using mathematical
terms; to representing generalizations using pictures, drawings, and graphs; to record-
ing their insights using symbols. For example, students might notice that when you
multiply zero and any number, the product is zero. They generalize their observation
to all numbers and talk and write about what they notice. Eventually students
progress to formally representing this property using variables: a X 0 = O where a is
any number. Likewise, young students first notice that the number pattern 3, 8, 13,
18, 23, 28, 33, . . ., is growing by 5s. They represent the increase in the pattern in
more and more sophisticated ways, perhaps noting that the pattern in the ones place
alternates between 3s and 8s or by using the operation + 5.




The third process, justifying, goes hand in hand with conjecturing. When students i
conjecture, they propose a mathematical statement that they think might be true but '
has not yet been proven true. Justifying is the “process of developing mathematical
arguments to explore and critique the validity of mathematical claims” (NCISLA
2003, 5). For many teachers and students, the first step is realizing that claims should
and can be justified. Justification of generalizations or conjectures requires more than
providing many examples. Students need to be able to explain why they know some-
thing will be true for all numbers.

3 A teacher’s ability to help all students learn algebra depends in part on his or her
T awareness of the most important concepts and ideas: variables, symbols, structure,
; representation, patterns, graphing, expressions and equations, and rules and func-
tions. Many of these concepts are introduced in the elementary grades, in particular 2
4 the study of variables, patterns, rules and relationships, equality, and graphing. In the
8 ' middle grades instruction is expanded and also focuses on representation, expres-
sions, equations, and functions. Teachers who ask questions that assist students in {
: generalizing, formalizing, and justifying their statements about problems and situa-
1 ‘tions are laying the foundation for understanding more complex mathematics, ]
including algebra.

1. The Concept of Variable

Historically, algebra has progressed through three major stages, each defined by the

concept of variable prevalent during that period. Algebra in its earliest stage did not . o
include symbols but rather used ordinary language to describe solution processes for
certain types of problems. The second stage (circa A.D. 250-1600) included using
symbols to represent unknown specific quantities, the goal being to solve problems
for these unknowns. In the third stage (1600—present), symbols have been used to
eXpress general relationships, to prove rules, and to describe functions.

Francoise Viete (1540-1603) was the first to use letters in formal mathematics
notation. Shortly thereafter, René Descartes used letters in a more systematic way:
a, b, ¢ for constants and x, y, z for unknowns. When Descartes went to have
his manuscript La Geometrie published in 1637, the printer, Jan Maire, of Leyden,
Holland, began running out of some of the letters in the type set. He asked
Descartes whether it mattered which letters represented the unknowns. Descartes
replied that the specific letter was unimportant, as long as the unknown was repre-
sented by x, v, or z. Having plenty of the letter x on hand, the printer used it to
represent the unknowns, thus contributing to the formulation of the algebraic dic-
tum, “Solve for x.”

As the concept of variable developed historically, the ways in which letters were
used expanded. Experts categorize variables in different ways, but any particular use ) 1
of a variable is determined by the mathematical context. In elementary and middle ‘
school, variables are primarily used to represent specific unknown values in equa-

' tions, sets of numbers in inequalities (e.g., x < 10), property and pattern generalizers

(a+b=b+ a), formulas (A = | X w), and varying quantities in functions (y = 2x + 1). i
The most common uses of variables are as specific unknowns, as generalizers, and as i
i varying quantities.
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Activity

Considering Variables

Objective: identify examples of the different uses of variables.

In the following equations and inequalities, variables are used in different ways.
How is the variable being used in the examples below? What is the value of the
variable in each example?

1,2 %0=15—01

2.y =32

3.2x +3 =y

4 (aeb)ec=ac(b°q)
5. 49 = 52

6. A=1Iw

Things to Think About

One important use of a variable is as a particular but unknown number. For
example, in x + 6 = 10 and 3m = 18, the value of x is 4 and the value of m is
6. There is a specific number in each case that makes the equation true. This is
the most common use of variable in the elementary grades. In the early grades,
the unknown value is often represented using a shape such as a square or trian-
gle: [J — 8 = 10. Algebraic equations that include one or more variables are
sometimes referred to as open sentences. Open sentences are neither true nor
false until values are substituted for the variables. For example, if we replace
O] with 18, the open sentence [J — 8 = 10 is true but if we replace [J with any
other number, the equation is false. Our goal when solving for unknowns is to
find values that make equations or open sentences true!

Examples 1 and 5 use variables as unknowns: in1,(J=5;in5s=7and 7.
Were you surprised that example 5 has two solutions? In the equation 49 = s?,
both s = 7 and s = ~7 make the equation true. Even though there is more than
one solution, the variable still represents specific unknowns—just two in this case.

How is the variable used in example 27 In this inequality, y is equal to a set of
numbers that starts at 32 and decreases infinitely. The idea that a set of numbers
is the solution to a mathematical statement can be difficult for students if they
have only had experiences with variables as specific unknowns.

The equation in example 3 represents a function in which the value of one
variable depends on the value of the other variable. One letter takes on a set of
values and has a systematic relationship with the other letter (y = 2x + 3)—the
value of y depends on the value of x. When the value of one variable changes in
relation to the value of another variable, we refer to this as joint variation. In the
chart below are values for x and y. The y values were calculated by replacing the
x in the equation y = 2x + 3 with different x values. Notice how as the value of
X increases, the value of y increases.

X y
4 “h
0 3
2 7
9 21
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The set of values for x is called the domain and the set of values for y is called
the range. This interpretation of variable as a varying quantity is essential to
understanding the relationship of patterns to functions.

In example 4, variables are used to illustrate a general property, in this case
the associative property of multiplication. The variables do not represent an un-
known or a varying quantity that is related to another variable. This is a general-
ization in which the letters convey a relationship that is always true about the
multiplication of real numbers.

In the last example, the formula A = lw provides information on the area of a
rectangle and describes the relationship between three quantities: the area of
the rectangle, the length of the rectangle, and the width of the rectangle. Letters
in a formula always represent varying numbers and delineate a real-world rela-
tionship. For example, the equation F = ma represents the relationship between
Force, mass, and acceleration in physics. Thus, we could classify example 6 with
example 3: variables as quantities in joint variation.

It is important for students to realize that there are a number of interpreta-
tions of the term variable. If they understand variables only as representations of
specific unknowns, it is not surprising that they have difficulty interpreting in-
equalities in which variables represent sets of numbers. On the other hand,
sometimes students take the term variable literally and assume that a variable is
something that differs or varies. We compound the problem by not referring to a
variable as an unknown when it is appropriate to do so. Other difficulties arise
when students overgeneralize; students first come to realize that the symbol or
letter in a problem (e.g., (] above) represents the same number throughout an
equation no matter how many times it appears. Yet this leads them to mistakenly
assume that when there are different variables in an equation (e.g., a + b = 12),
they cannot be replaced by the same value (in this case, 6). Furthermore, they
mistakenly conclude that in the equations m + 3 =7 andy + 3 =7, the m and y
must be different quantities because different letters are used. A

%
A common misconception involving variables is that students interpret them as

labels. If g represents the number of girls in a dorm room, 3g is interpreted by students
as 3 girls instead of 3 times the number of gitls in the dorm room. In addition, the use
of particular letters in conversions (3f = Iyd) and formulas (I is used for length)
sometimes contributes to students’ mistakenly thinking of a variable as a label. For
example, in the expression, 2t + 4 where t represents the number of tiles, students
often interpret 2t to mean 2 tiles rather than 2 times the number of tiles.

Teachers should consider how to transform problem situations to support students’
understanding of variable, especially as a generalizer of patterns and properties. One
way is to vary the numerical values of givens in problems—and to examine the pat-
terns that emerge. For example, if a problem states that CDs cost $12 and a student
only has $5, teachers can ask how the amount needed will change if CDs cost $13,
$14, $15, or $16. Students can be asked to write number sentences for the amount
needed to buy a CD for each CD value and observe what changes and what stays the
same each time. Eventually they can be asked to generalize the situation (N — 5
where N equals the original cost of the CD).

Young children are capable of making conjectures about basic properties of num-
ber operations. For example, students might recognize that multiplying any number
by zero results in a product of zero. They can be asked to express their conjecture using

ALGEBRA / 193




2. Symbols

words, numerical examples, and eventually with an open sentence that includes a
variable (e.g., a X 0 = 0). After students are comfortable with their conjecture and
generalization, they can be challenged to justify it. Students often suggest many more
specific examples; if this occurs, teachers must encourage students to show that their
generalizations are true for all numbers, not just some (Carpenter et al. 2003).

Mathematical symbols provide us with an efficient way to convey information with-
out using words. When people talk about the language of mathematics, they are of-
ten referring to the symbols and shorthand notations that we use to do mathematics.
These symbols must be learned and then repeatedly interpreted within problems and
procedures. There are many different kinds of mathematical symbols: numerals and
variables (often called literal symbols) such as =5, 36, x, [, and V; operational sym-
bols such as + and ‘+; relational symbols such as = and >; and geometric symbols
such as £ and L, to name just a few. Shorthand notations such as LCM (least com-
mon multiple) and P(A) (probability of A) are also common. In Section 1 we dis-
cussed variables; in this section we describe operational and relational symbols.

What complicates the interpretation of symbols is that some symbols have more
than one meaning. Parentheses are used to differentiate the operation of multiplica-
tion from a numerical value—2(3) versus 23—and to indteate a grouping that is to
be performed first following the order of operations—(3 + 9)% In addition, some sit-
uations can be expressed using more than one symbol. For example, multiplication is
indicated using the “times” sign—2 X 3—by a raised dot—2 © 3—and by placing
two symbols next to each other without spaces—2(3), lw, and 2x. Take a minute and
think of an operation that can be shown using a variety of symbols. Division can be
expressed using +, /, and ). As adults we forget to explore explicitly with students
the fact that there are multiple ways to represent an operation symbolically. Can you
think of any symbols that are interpreted differently depending on their use? The
fraction bar sign (2) can indicate a division, a fraction, or a ratio. Certain letters rep-
resent types of quantities in specific formulas but can represent any number in other
equations. For example, the C in C = 2r stands for the length of the circumference,
the Cin F = 32 + (2)C represents degrees in Centigrade, but the ¢ in 6c = 18 is an
unknown value (3) and is unrelated to a particular context. While adults have inter-
nalized these subtle and not so subtle differences, students often are unaware of
multiple meanings. Thus, it is extremely important that we engage students in dis-
cussions about the meaning of symbols.

It is important for students to think carefully about operational symbols. Opera-
tion symbols describe an action on one or two numbers or symbols. When we see
these operation symbols, we are keyed to “do something.” Students encounter opera-
tional symbols for addition and subtraction (+ and —) in their first year or two of
schooling. These operations are binary operations: the operation is performed on two
numbers. Multiplication and division (X and +) are also binary operations—we can
multiply or divide only two numbers at a time. Other operations, such as 100ts,
absolute values, and powers (\/ﬁ, |-41, and &), are unitary operations. Unitary
operations are conducted on one number at a time. What kind of operations ar¢
(2 + 6) or 19 + 711 These expressions combine operations—the division (2 + 6)
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3. Equality

is a binary operation that equals L and the exponent (power of 2) is a unitary opera-
tion: (3)? = . The parenthesis, a grouping symbol, lets us know which operation to
perform first. Likewise, the addition 9 + =7 is a binary operation which is completed
first. The absolute value is then taken on the result, 2. .

Another important group of symbols are classified as relational symbols. Relational
or relation symbols establish a relationship between two numbers, two number sen-
tences, or two variable expressions. Some common relational symbols are =, #, =,
=, <, and >. The relationship is either true (10 = 10) or false (5 > 8), though in
the case of open sentences (9 +3 = () + 4) we always try to find a value to make the
sentence true. What can be confusing is that on either side of the relational sign
there may be operations that must be completed in order to evaluate whether or not
the relationship is true ot false. Examine the following and consider whether the re-

lationships that are being established are true or false.

6+ 14 <12 True, 6 does not equal 14 + 2,0r T

18=19 False, 18 is not greater than or equal to 19
54+7=2X6 True, 5 + 7 equals 12 and 2 X 6 equals 12,12 = 12
O<0O+3 True, any number is less than that same number plus 3

Students need to examine many different number sentences such as the first three
examples above and evaluate whether they are true or false. Teachers can then ask
students to change the sentences, making true ones false and false ones true. Or
students might be asked to group number sentences and explain why they placed dif-
ferent sentences together. Asking students to discuss the relationship between the
quantities on each side of a relational symbol will help them interpret these symbols
correctly. Open sentences in which one or more variables are represented are espe-
cially problematic for students. Research has shown that in open sentences like
8 +.4 = [J + 5, students in grades 1 through 6 overwhelmingly think [ equals
cither 12 or 17 (Falkner, Levi, and Carpenter 1999). They add the first two or all
three numbers and do not interpret the equal sign as a symbol that establishes a rela-
tionship between the quantities on either side of it. This important idea is explored
in more detail in the next section.

Another fundamental idea of algebra is equality. Equality is indicated by the equal
sign and can be modeled by thinking of a level balance scale. Why is equality impor-
tant for students to understand? First, the idea that two mathematical expressions
can have the same value is at the heart of developing number sense. For example,
we want students to realize that there are many ways to represent the same product
(9 X 4 =2 %3 X 6). We want students to use what they know about the composi-
tion of numbers to help them remember aumber facts and form equivalent state-
ments (7 +6=6+06+1 and7+6=7T+17~-1) Understanding these number
sentences and the relationships expressed by them is linked to the correct interpreta-
tion of the equal symbol.

The second reason for understanding the concept of equality is that research has
shown that lack of this understanding is one of the major stumbling blocks for
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students when solving algebraic equations. To solve 3x + 2 = 14, we add =2 to both
sides of the equal sign, thus maintaining balance or equality (3x + 2 + 72 = 14 +
=2, or 3x = 12). The next step in the solution process involves multiplying both 3x
and 12 by 4, again because performing the same operation on equivalent expressions
means they will remain equivalent (()3x = 12(3), or x = 4). If students do not un-
derstand the idea of equality of expressions, they may perform computations on one
rather than on both sides of an equal sign.

Yet the concept of equality is not easy for students and many do not correctly in-
terpret the equal symbol. For example, often students think that the equal sign is a
symbol that tells them to do something (such as subtract or multiply) rather than a
symbol that represents equal values or balance. Students see an equation such as
6 + 4 = [0+ 6 and assume 10 is the answer because they have completed the addi-
tion on the left: to them the equal sign means “fill in the answer.” Other children
cannot make sense of 7 = 9 — 2 because the operation symbol is to the right of the
equal sign rather than the left. When students make these types of mistakes, we
need to ask them to explain their thinking and to share with us what the equal sign
means to them. However, telling students that the equal sign is, by convention, the
symbol that lets us know that quantities are equal is not sufficient to clear up their
misconceptions. We need to include activities and discussions in our instruction
that focus on understanding equivalent values. Exploring whether number sen-
tences are true or false is one activity that helps build understanding with number
sense.

Another activity that supports understanding equality is to use balance scales.
The balance scale is a visual model for the equality relationship. Most students intu-
itively understand that a balanced scale remains balanced if equal amounts are added
to or subtracted from both sides of the scale. Balance scale problems can be used to
investigate equivalence and to prepare students informally for symbolic representa-
tion and more abstract solution techniques.

2

Balance Scales

Objective: explore the concept of equality using a balance scale.

Solve the balance scale probiems on page 197. On each of the balance scales, as-
sume that the same shapes represent the same weights. In each problem, use the
information from the balanced scales A and B to figure out what's needed to
balance scale C.

Things to Think About

If you have never examined problems like these, there are a number of general
principles you have to consider. First, a level scale implies that the guantities on
one pan are equivalent in weight to the quantities on the other pan. Second, wé
can modify both sides of the balance scale and maintain equality using either ad-
ditive reasoning—removing (or adding) the same amount from (to) both sides of
the scale—or multiplicative reasoning—multiplying or dividing both sides by the
same factor. (If two cylinders balance six spheres, then one cylinder is equivalent
in weight to three spheres). Third, we can replace objects of equal weight. These
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principles are not easy for students to understand, especially when presented in
the form of equations and inequalities. However, they are more accessible and
engaging when students encounter them in the form of balance scales.

Let’s examine balance problem 1 in detail. Scale A shows that six spheres are
equivalent to two cylinders. Dividing the number of spheres and the number of
cylinders in half results in three spheres balancing one cylinder. We can use this
equivalence relationship to adjust scale B. Let’s remove the cylinder from the
left side and three spheres from the right side of the balance (since they are
equivalent). The remaining cube balances two spheres: two spheres are equiva-
lent in weight to one cube. So a cube added to the right side of scale C will
balance it.

Do we always need to start with scale A? Absolutely not! In problem 2, let’s
focus first on the relationship shown on scale B. Using this relationship to substi-
tute specific shapes on scale A, we find that the two triangular pyramids on scale C
equal one sphere. In problem 3, we can also start with scale B, establishing that
one sphere weighs the same as three cubes. Using substitution on scale A, we
can replace the two spheres with six cubes. Six sticks are equivalent to six cubes,
so the single stick on scale C is equal to one cube.
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h We solve balance scale problems by reasoning about equal relationships. An-
i other way to do this is to link these actions and relationships to algebraic sym-
E bols. The relationship depicted in scale A of balance problem 4, in which two
cubes weigh the same as one pyramid, can be indicated as ¢ + ¢ = p. Scale B

§ shows this same relationship, but in addition a cube has been placed on the left
. pan and a sphere on the right pan and the scaie still balances. This implies that a
: cube weighs the same amount as a sphere. The weights on scale B can be indicated

symbolically as s + p = ¢ + ¢ + ¢. When comparing the two equations, we can
reverse the order of the second equation and then substitute information from

s the first equation into the second equation:

scale A c+c=p
i scale B ctc+c=s+p
i SO c+p=s+p
' c=5

This tells us that a cube weighs the same as a sphere. A

4. Patterns and Rules

Mathematicians repeatedly make the point that one of the primary activities in
mathematics is to describe patterns: patterns in nature, patterns we invent, even pat-
terns within other patterns. By examining a wide range of patterns, we notice regu-
1 larity, variety, and the ways topics interconnect. We also see that certain patterns
E - occur again and again. There are many types of patterns: repeating patterns, se-
quence patterns, and special patterns like Fibonacci numbers. Some patterns can be
represented using rules or functions. Other patterns can be represented both numeri-

: cally and geometrically and help us link arithmetic and geometry.

] One type of pattern that is introduced in the early grades is a repeating pattern.
Repeating patterns have a part, sometimes called the core, that repeats over and over.
For example, in the pattern VLPLVHEVHWS ., the core of ¥ repeats. Stu-
dents must identify the core of a pattern in order to continue it. Repeating patterns
can be presented orally (e.g., the refrains of many songs repeat) or by using motions
such as clapping and turning. Repeating patterns can also be represented using num-
‘ bers, pictures, and objects. Young children need to identify, describe, extend, and
g create a wide variety of repeating patterns.

i Activity
#
i véf%v Investigating Repeating Patterns
‘3 Ovbjective: learn about the structure of repeating patterns.

Examine the pattern 1-2-3-4-1-2-3-4- ... and make a list of three questions you
might ask students regarding the pattern. Imagine extending this pattern indefi- =
nitely. What will the 19th number be? the 81st number? If you examine the first =
42 numbers in the pattern, how many of the numbers will be 25?7
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Things to Think About

What questions did you think of to pose to students? Identify the core of the pat-
tern? Continue the pattern? Fill in a missing value? Questions like these are very
appropriate for young children who are still learning to make sense of patterns.
However, students also benefit from questions that force them to generalize re-
lationships and use repeating patterns in more complex ways.

Determining the 19th number in the pattern takes two steps. First you have to
notice that the core of the pattern involves four numbers, 1-2-3-4. Then you
have to replicate the core a number of times to come close to 19 numbers. Did
you make four copies of the core, using 16 numbers, and then count on 3 more
numbers to reach the 19th number? Or did you make five replicas of the core,
giving you the 20th number, and then count back 1 number? Either way a 3 is the
19th number in this pattern. Using this same form of reasoning, the 81st number
isal.

How many 2s will be needed to write the first 42 numbers in this pattern? You
will need ten sets of the core, which means you will use ten 2s. But since you
also need an additional 1-2 to have a total of 42 numbers, the total number of 2s
needed is eleven. A

Nonrepeating patterns are more difficult to understand. Students must not only
determine what comes next in the pattern but also begin to generalize. Numerical re-
lationships become more and more important. A particular type of pattern in which
numbers, objects, letters, or geometric figures are in an ordered arrangement is called
a sequence ot, informally, a growing pattern. Growing patterns are found in instruc-
tional materials in grades 3, 4, and 5 and in middle school. The numbers, objects,
letters, or geometric figures that make up the sequence are called the terms, steps, or
stages of the sequence. Sequences are classified according to the methods used to
determifie subsequent terms. There are arithmetic sequences and geometric sequences.

In an arithmetic sequence, the same number, called the common difference, is
added to each previous number to obtain the next number. Some numerical exam-
ples are:

5, 6,7, 8918, s 2,4,6,8,10,... 7,50, 13,16, 19:2%; : v

In the first sequence the common difference is 1: the first term is 5, the second term
is 6, the third term is 7, and so on. The second sequence has a common difference of 2,
since the number 2 is added to each previous term. In the third sequence, the com-
mon difference is 3: term number one is 7, term number two is 10, and term number
three is 13.

Sometimes arithmetic sequences decrease racher than increase, because the num-
ber that is added each time is a negative number. In the examples below a (75) and a
(~1) are being added to the previous term. Extend each pattern.

15,10, 5,0,75, 710, . .. 10,9%,9,8L, 8,7, ...

Sequences can also be represented using geometric designs or figures. How many
squares will be in the 15th figure of the following pattern?
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Stage 1 Stage 2 Stage 3 Stage 4

i Srudents sometimes find it easier to notice the numeric pattern, or common dif-
ference, from one term to the next term when they record the steps in a table.

¥ STEP 1 2 3 4 5 6 15

§ NO. OF SQUARES 5 8 11 14 2 ? . ?

: Did the geometric design or the table help you notice that the pattern is successively
increasing by 37 When a procedure is applied over and over again to a number or
geometric figure to produce a sequence of numbers or figures, we say that the proce-
dure is recursive. Each stage of a recursive procedure builds on the previous stage. Re-
cursive procedures are sometimes referred to as iterative procedures because the same
rule is repeated again and again. In the geometric pattern above we repeatedly add
3 squares to create each successive design. Students often iaentify recursive rules (the
instructions for producing each term or step of a recursive sequence from the previ-
; ous term) and then use the rule to find each subsequent term (in this case, we can de-
termine each successive term by adding 3 to the previous term). This recursive
strategy works to find the number of squares in a small number of terms like the 15th
step (5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47) but is not efficient or rea-
sonable if we have to find the number of squares in the 100th term. We would have
to list the first 99 terms in order to find the 100th term!

The form of an arithmetic sequence can be expressed using variables. This enables
us to generalize patterns and relationships. Many teachers prefer to use symbols such
as triangles and squares before introducing letters as variables. Students can be first
; challenged to articulate the recursive rule (e.g., this sequence'is increasing by adding 6
; to each term) and then asked to represent the pattern more explicitly using words,
¢ symbols, and a variable. The mathematical purpose is to help students formalize the
4 similarities and regularities they have observed.

- How might we generalize the arithmetic sequences 2, 4, 6, 8, 10, . .. and 7, 14, 21,

28, 35, . .. 1 In each of these sequences the common difference also happens to be
| the first term. Using a symbol (/\, for example) or a letter (x, for example) to repre-
sent both the difference and first term, we can express the sequence like this:

5 ANAN+FAN+A+AN+A+FAFA, ...

Lx Akttt Gt K TE X

:

i In the sequence above, the variables—/\s or xs—are repeatedly added to form the
terms of the sequence. Another way to represent this is by using multiplication;
first we have one 7\, then two As, then three /\s, and so on, or 1x, 2x, 3x, 4x, and

] SO On. i
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Activity

Variables can represent different things depending on how they are used. In this
case, the variable (/\ or x) represents a set of numbers. Substituting different num-
bers for the common difference creates different sequences:

1x, 2x, 3x, 4x, . . . 1%, 2x, 3x, 4%, . . .
1(2), 2(2), 3(2), 42), . .. W 200305400 - « -
2,4,6,8,... 7,14,21,28,...

How might we determine the 32nd number in the first sequence (2,4,6,8,...)

other than using the recursive rule of + 2 and listing the first 31 terms? Is there an-
other pattern that can be used to link the term of the sequence to the actual number
in the sequence? Yes, an explicit rule where we multiply the term number and the
common difference can be used. The 32nd number in the sequence will be 32 X 2, or
64, since 2 is the common difference. The 32nd term in the sequence starting with 7
above is 32 X 7, or 224.

Not all arithmetic sequences begin with the common difference; most, such as 1,
3,5,7,9,...,start with a different first number (in this case, 1) and repeatedly add
the common difference (in this case, + 2). We can represent this sequence using
symbols by letting [ represent the starting term and letting /\ represent the com-
mon difference (the number added to each term). We can also use letters. Let a equal
the starting term and let x equal the common difference. In this case, there are two

variables (shapes or letters) in our generalized statement.

O A+0 (A+D+A (A+A+D)+A, (A+A+A +D+A,...
[ &l 2A+E 3A 4+, 4A +0, ...

a x+a 2x+a, 3x + aq, 4x+a,...

Let’s substitute numbers into this generalized pattern. If a = 1 and x = 2 then:

=
ax+talx+adxtadxta,...

1,2+ 1,2(2)+ 1,32y + 1,4(2) + 1,...
1,.3,.5 T Dy ¢
The generalization above works for all situations, whether the U] represents zero,
the common difference, or any other number. The use of variables to show the

extension of an arithmetic sequences lays the foundation for students to be able to
describe sequences using algebraic expressions or rules.

Exploring Arithmetic Sequences

Objective: practice using both recursive and explicit rules and generalized
patterns to solve problems involving arithmetic sequences.
1. Make up an arithmetic sequence with a common difference of ~6. What would

the 125th term be?
2. Make up an arithmetic sequence that starts with 3 and has a common dif-
ference of 5. Use the generalized pattern to find the 2,345th term in the

sequence,
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3. How many numbers (or terms) are there in the arithmetic sequence 4,8, 12,

16, ..., 1247 What if you wanted to extend this sequence? Write a rule that
you could use.
4, Examine the sequence 1, 5, 9, 13, 17, . .., 65. What do you notice? How is

i this sequence similar to the one in Question 3? different?

§ Things to Think About

If a sequence has a common difference of ~6, each subsequent term of the se-
quence is smaller than the previous term (since we are adding a ~6 each time).
Using our recursive rule and starting with ~6, some terms in this sequence would
i be: =6, ~12, ~18, ~24, ~30, .. .. To find the 125th term, we need an explicit rule
linking the term number and the sequence number—namely 125 X (76). The
B 125th term in this sequence is ~750.

| The arithmetic sequence for Question 2 is 3, 8, 13, 18, 23, 28, 33, 38, and so
on. In each case, a common difference of 5 is being added. Did you notice the
: pattern in the ones digits of the numbers in this sequence? The ones digit is
i either a 3 or an 8. The 2,345th term can be found by multiplying 2,344 by 5 and
then adding 3, because 3 was the starting point of the sequence (2,344(5) + 3 =
11,723); the 2,345th term is 11,723 (which ends in a 3!).

Did you notice that the sequence in Question 3 has a common difference of
4? Each value in the sequence is 4 more, or 4 times the number of the term (4 =
4e1,8=422,12=4-¢3,. . .). Tofind how many numbers or terms are in the
sequence, divide 124 by 4. There are 31 numbers in the’sequence.

So far we have written rules in which the variable, x, represents the common
difference. But what if, as in Question 3, you know the common difference? Then
i you might want to let the variable represent the position of the term in the se-
-’ quence. Since the common difference in Question 3 is 4, we can represent any
A term as 4x. Put another way, our explicit rule for any number in the sequence is
4x where x represents the term number. The idea that variables can represent
anything (the common difference or the term or both) is what makes algebra so
useful and also so confusing.

The sequence in Question 4 is very similar to the sequence in Question 3. It
also has a common difference of 4, but the sequence begins with 1 rather than 4.
All of the terms are 3 less than the corresponding terms in the Question 3
sequence: , !
- 15,9, 13, 17, ... j
4,8,12,16,20, . ..

E Can we use the rule above in which x represents the position of the term in the
1 sequence as the basis for a similar rule for the sequence in Question 4? Since the
' numbers in this sequence are each 3 less than the numbers in the 4x sequence, ;
we can show this algebraically as 4x — 3. Substitute various term numbers for X
4 to show that this rule will generate the sequence. A

Exploring arithmetic sequences forms the basis for later work with functions, in
which two variables are related in such a way that one depends on or is affected =
by the other. In arithmetic sequences, many things can be represented as a variable:
the common difference, the starting number, the position in the sequence, and the
actual value of each term. Some of these variables depend on one or more of the
other variables. Investigating these relationships informally helps prepare students t0
explore these dependent relationships formally in middle and high school.
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The other type of sequence is the geometric sequence. In a geometric sequence,
instead of the same number being added to each term to obtain the subsequent term,
the same number is multiplied by each term to obtain the subsequent term. Rather than
having a common difference, as arithmetic sequences do, geometric sequences have
what is known as a constant multiplier—a number that when multiplied by the previous
rerm produces the next number in the sequence. The sequences below highlight how
a common difference and a constant multiplier affect the numbers in a sequence. In

the arithmetic sequence 1, 3,5, 7,9, . . . the common difference is 2. Now let’s start a
geometric sequence with 1 and let the constant multiplier be 2. Since we are multiply-
ing each number by 2, the outcome is quite different: 1, 2, 4, 8, 16, .. . . Determine the
common difference and the constant mulriplier in the following sequences.

Arithmetic Sequences Geometric Sequences

A 1,2,4,8,16,...

3.5, 1.5 %o 5. 5.5% 500

2,4,6,8,10,... 24,8, 16,32, . ..

1:10; 13, 16, 19, . ... T.21,63; 185308 s »

7,14, 21,128, 35, . .. 7,49, 343, 2401, 16807, . . .

The form of a geometric sequence also can be expressed using variables—symbols or
letters. Let the [Jor the letter a represent the starting term and /A or the letter x rep-
resent the constant multiplier, the number that is multiplied by the previous term.

O 0« A, e A)e A, (De A A)o A, ...

aaex,(asx)ex (aexex)ex, ...

Since we are multiplying by the same number each time, we can represent the pat-
tern using exponents. Exponents are a shortcut for repeated multiplication. In 8, the
number 8 is called the base and the number 3 is called the exponent, or power.
Furthermore, the symbols 8 together are referred to as an exponent or an exponential.
Exponents represent a product (in the case of 8, 256). An important exponent
definition is that any number, a (where a # 0), to the zero power is equivalent to 1
(e.g,a®=1,5=1,35°=1,02%=1). Below are the two generalized statements for
the sequences using exponents:

(de A, (De AY), (e A, (He A}, (e AY), ...
(@ae®),(aex!),(aext),(aex), (aexh),...

Some numerical examples are:

3,6,12,24,48, ... (329,(302Y),(322),(32°),(3¢2%,...
1,5,25,125,625,... (1 ®5%,(1e5%), (15, (15, (1e5%,...
40,10,2.5,0.625,... (40 ¢ 0.259%, (40 © 0.25"), (40 * 0.25%), (40 © 0.25), . ..

In descending geometric sequences it can appear that the terms are being repeatedly
divided. In fact, the terms are being multiplied by a fraction (). This has the same
effect as dividing by the reciprocal of the fraction (in the example above, the recip-
rocal of 1 is 4).

The terms in a geometric sequence increase or decrease much more quickly than
the terms in an arithmetic sequence. This type of growth is known as exponential
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Activity

growth—and the decrease is known as exponential decay. Exponential growth and
decay occur when the change between terms is the result of multiplication, not addi-
tion. Students informally learn about exponential growth and decay when solving
problems or when working with geometric sequences. They study these concepts for-
mally in middle and high school.

) 4

2

Choosing Between Salary Options

Objective: compare the growth of an arithmetic sequence and a geometric
sequence.

Tom agrees to care for his neighbors’ cat while they go on a two-week vacation
and has to choose one of two pay options. Payment plan A consists of $2 on the
first day, $4 on the second day, $6 on the third day, $8 on the fourth day, and so
on for 14 days. Payment plan B is also by the day: 2¢ on the first day, 4¢ on the
second day, 8¢ on the third day, 16¢ on the fourth day, 32¢ on the fifth day, and
<o on. Calculate how much money would be made each day according to the dif-
ferent plans. Which plan would you choose? Why?

' Things to Think About

~

Were you surprised by the difference in the sizes of the salaries on the T4th
day? Plan A increased slowly and steadily while plan B increased very slowly at
first but then grew rapidly. The salary according to plan A is based on an arith-
metic sequence in which the common difference is 2. Each day the salary
increases by two more dollars; therefore, on day 14 you make $28 dollars. Gen-
eralizing using plan A, on day x you receive 2x dollars. The total amount of
money for the 14 days is found by adding the amounts earned on day 1 through
day 14—5$210.00!

Plan B is based on a geometric sequence in which the constant multiplier is 2.
Each day the salary from the day before is multiplied by 2. This salary plan pays
less per day until day 12. However, the last three days pay so well that the total
amount of money earned for the 14 days is $327.66! A comparison of the salary
plans is shown below: ’

DAY 1 2 3 4 5 6 7

Plan A $2 $4 $6 $8 $10 $12 $14
Plan B $0.02 $0.04  $0.08  $0.16  $0.32 $0.64  $1.28
DAY 8 9 10 11 12 13 14

S A sie S8 s20 S22 %24 526 528
Plan B $256  $5.12  $10.24 $20.48 $40.96  $81.92 S”Ef_f‘.

The doubling pattern in plan B may be easier to recognize when the dollar and

cent signs are removed: 2, 4, 8, 16, 32, 64, 128, . . . . This sequence could be

represented using exponents: 21,22, 23, 24 and so on. In fact, the powers Of_l
as this sequence is often called, is one that we want older students to recognizé
and link to exponents automatically. The salary on the 14th day is equivalent t0
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214 or 16,384¢. The exponent, 14, is the same number as the day (or term). The
explicit rule can be generalized as 2" where n is the day or term.

There are a number of children’s stories that deal with exponential growth.
Anno’s Magic Seeds, by Mitsumasa Anno, The King’s Chessboard, by David Birch,
A Grain of Rice, by Helena Clare Pittman, and The Rajah’s Rice, by David Barry,
are just a few. These stories provide a context in which elementary and middle
school students can explore geometric growth and work with patterns that
involve exponents. Students’ understanding of different types of growth is
expanded when comparing arithmetic and geometric sequences. In addition,
students enjoy learning how to represent products using exponents. A

When students explore patterns and generalize relationships among numbers, they
are developing informal understanding of one of the most important topics in high
school and college algebra—functions. A function is a relationship in which two sets
are linked by a rule that pairs each element of the first set with exactly one element
of the second set. We use functions every day without realizing it. The relationship
between the cost of an item and the amount of sales tax is a function, the automatic
calculations performed by computer spreadsheets are based on defined relationships
between and/or among data fields, and our car’s gasoline mileage is a function that
depends on the speed of the car and the efficiency of the engine. When we were talk-
ing earlier about rules for arithmetic and geometric sequences, we were generating
function rules, also referred to as explicit rules. The first set of numbers are the term
or stage numbers (e.g., Ist, 2nd, 3td, 4th, . .. ) and the second set of numbers are the
values of each term or, in other words, the numbers in the sequence (e.g., 10,20, 30,
40, ... ). How do we assist students in the elementary and middle grades in general-
izing explicit rules? One method is to start with patterns that are created using con-
crete objects such as pattern blocks, toothpicks, or square tiles. Students can be
encourage to extend the pattern using objects or drawings and talk and write about
what they notice. For example, examine the pattern and draw the next two terms:

| L [1 [LI [ [ |

- - —

Term 1 Term 2 Term 3

How would you describe the change from one term to the next (the recursive pat-
tern)? Some adults notice that the center five squares form a cross and the number of
squares at the four ends of the cross increase by one starting at term 2. Other people
notice a center square in each cross and that the lengths of the four legs of each cross
increase by one as the term increases. Different ways of seeing the pattern are high-

lighted on the following page.
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Term 1 Term 2 Te;n 3 Term 1 Term 2 Te:‘;‘l 3

Asking students to describe in words what they observe and to look for parts of
3 the design that stay the same and parts that change often assists students in
generalizing.

i However, in order to have students generalize the explicit or function rule, we
must move beyond simply extending the pattern and instead help them to make
sense of a rule between the term number and the pattern or sequence number. An
expanded t-chart is especially useful. In an expanded t-chart the columns indicate
both the constant amount and the change from term to term. Students can fill in
their t-charts with the observed data and then predict the pattern for several
larger terms or stages. We also want them to use these data to derive a rule for the

‘. pattern.

1 ) CONSTANT + CHANGE PATTERN IN TOTAL NUMBER
4 TERM NUMBER IN SQUARES CHANGE OF SQUARES
1 V£ 4 x1 5
-, J 1+8 42 9
3 1 €92 4x3 13
] 4 1+16 4% 4 17
1 s *
il 15
L4
| 25 1+ 100 4 % 25 101
n 4 xXn 1+ 4n i

From the t-chart, we can see that for term number n, the number of squares can be
; represented with the explicit rule of 1 + 4n. Students need many opportunities to
extend patterns and to analyze constant and changing values in order to generalize
i and write explicit rules.

Another way for students to learn about functions and to practice generating
explicit rules is by using function machines. A function machine is an imaginafy
device that links sets of numbers: an element (the input) is put into the machine =
and acted on according to a rule, and another, related element (the output) IS =

produced:

206 / CHAPTER?




Activity

Input 5

Rule Add 3

I—-> QOutput L> 8

When any two of these three components (input, rule, output) are known, the
third component can be analyzed (and often determined). In the examples that fol-
low, finding the output in the first function machine (21) is very straightforward.
Finding the missing input, as in the second function machine (it’s 9), can be more
complex, because we have to apply the inverse operation of the rule to the output. In
the third example, however, since we are given only one input/output pair, we can’t
be certain what the rule is. That’s because more than one rule can be applied (e.g.,
add 2, multiply by 2, or, perhaps, multiply by 3 and subtract 2N

30 7 2

Y Y | v

Subtract 9 Multiply by 4 Rule ?

~

L - L

Function machines are useful both for applying rules (forward and backward) and
for generating rules for data sets. However, we also want older students to generalize
these function rules using variables. One way to present these functional relationships
is by using input/output tables and asking students to examine the input and output
data, look for patterns and relationships, and write a rule for the nth input value.

v

0

Finding Function Rules

Objective: determine the explicit rule for each function machine.

Examine the following tables. Determine the relationship between the two sets
of numbers, represent that relationship using a rule, and fill in the blanks. Con-
sider whether the numbers are increasing or decreasing because of a common
difference or a constant multiplier.
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‘ TABLE A TABLE B TABLE C

INPUT OUTPUT INPUT QUTPUT INPUT QUTPUT
| 1 =2 1 3 1 100
é 2 1 2 9 2 96
: 3 4 3 27 3 92
3 4 7 4 81 4 88
S 5 10 5 243 5 84
6 6 6
X 9 9
| 10 10 10
4 40 531,441 52
“ n n n

Things to Think About

Numerous patterns jump out at us when we look at an ir?put/output table. Look-
ing at the two vertical columns in Table A, we see that the inputs are increasing
by 1 each time and the outputs are increasing by 3. The repeated adding of 3
suggests that the relationship can be modeled by multiplying the input by 3. In
order to determine a rule, however, we have to examine both the vertical and the
horizontal patterns. What is consistent about how the input of 3 and the output
of 4, the input of 4 and the output of 7, and the input of 5 and the output of 10
are related? The outputs are always greater than the inputs, but not by a con-
stant amount. It sometimes helps to test a temporary rule suggested by the ver-
tical outputs (multiplying by 3, in this case). Notice this is similar to what we did
with the t-charts: identifying patterns in the change from term to term.

TABLE A TEMPORARY RULE (3n)

.' INPUT OQUTPUT INPUT QUTPUT ,
: ! -2 1 1x3=3 4
3 2 1 2 2X3=6 4
3 4 3 3x3=09 b
4 7 4 4X3=12 :
4 5 10 5 5x3=15 i
« n ? n 3n

Comparing the outputs in our temporary table to the corresponding outputs in
Table A, we discover that they all differby 5:3 — (72) =5,6 - 1=5,9—-4 = 5. ]
Thus we can revise our temporary rule of 3n to 3n — 5. Checking this rule against 4
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the inputs and outputs in Table A verifies that the rule holds. We then use it to fill
in the blanks in Table A: 13, 22, 25, 15, 3n — 5.

Did you notice that the outputs in Table B increase rapidly? This suggests that
the rule might involve a constant multiplier. Looking at the vertical column of
outputs we observe that each successive output is 3 times greater than the pre-
vious output, which suggests that the constant multiplier is 3. Writing each out-
put as an exponent to the power of 3 (3!, 32, 3%, . . . ), we can derive the function
rule for Table B to be 37. The missing values in the table are 729, 19,683,
59,049, 12, and 3". '

In Table C the inputs are increasing by 1 but the outputs are decreasing by 4.
We can say we are either subtracting 4 each time or adding a (74) to each subse-
quent output. Since the common difference is (T4), we can try out a temporary

rule in which we multiply the input by ~4:

TABLE C TEMPORARY RULE (~4n)
INPUT OUTPUT INPUT QUTPUT
1 100 1 1 X (T4)y="4
2 96 2 2% (T4) =78
3 92 3 I X (C4)="12
4 88 4 4% (T4) =716
5 84 5 5% (74) = 20
n ? n ~4n

Looking at the vertical column, we see that we need to subtract 4n from a larger
number. Try 100: 100 — 4n. This is close, but doesn’t work exactly: if n = 1, then
100 — 4 = 96. Aha, but what if we change the starting number to 104: 104 —
4n. Now the Function rule works for all inputs. The missing values in Table C are
80, 68, 64, 13, and 104 — 4n.

Another way to determine these function rules is to find the value at the O
stage or term—namely to work backward through the tables to figure out the
output when the input is 0. In Table C we saw that the common difference was
(~4). To move back up through the table, we perform the opposite operation or
add 4 to each output. For example, term 5's output is 84, term 4's output is 88
(84 + 4), and term 3's output is 92 (88 + 4). Using this approach, term 0’s out-
put is 104. Why is the O term important? Recursive sequences are defined by a
starting value and a rule regarding common differences or constant multipliers.
We generate the sequence by applying the rule to the starting value, then applying
it to the resulting value, and repeating this process. In order to write a function
rule for a sequence we have to know both the rule (the common difference or the
constant multiplier) and the starting value. Earlier in the chapter we explored se-
quences that began with the common difference or constant multiplier; the start-
ing value of those sequences actually is zero but we don't bother to record it. The
sequence 2, 4, 6, 8, 10, ..., could be written as 0, 2, 4, 6, 8, and so forth. In se-
quences that do not begin with zero, the O term gives us this starting number.
Table C starts at 104 and the rule is 104 + (“4)n, (or 104 — 4n). Use this strategy
to find the starting value of Table A. Did you work backward through the table
subtracting 3 to get a value of ~5? The rule for Table Ais 75 + 3n, or 3n — 5.
By convention we usually write rules by listing the variable first, but sometimes
beginning the rule with the starting value makes more sense.
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In any function machine, the value of the output varies depending on the value
of the input. For example, when we substitute different values for n (the input)
we get different outputs for 104 — 4n (the output). Sometimes the input/output
relationship is represented using the letters x and y. In the case of Table C, the
functional relationship is y = 104 — 4x. The variables, x and y, take on another
interpretation of the word variable, perhaps the most familiar one—variables as
varying quantities, &

Activity

Patterns, variables, and functions are linked in a number of ways. Some patterns can
be generalized using variables, and some patterns can also be represented as func-
tional relationships. A variety of repeating, arithmetic, and geometric patterns can
be used to explore these ideas. The ancient Greeks noticed that many numbers could
be used to make interesting dot patterns. For example, nine dots can be arranged in
rows and columns to make a square array, but eight dots cannot be arranged into the
shape of a square, only into a rectangular array. Numbers of dots that can be arranged
in geometric patterns are known as polygonal numbers or figurate numbers. Number
patterns based on these geometric patterns are very common. Two patterns occur so
frequently that they are known by the shapes they represent—square numbers and
triangular numbers.

/

Exploring Square and Triangular Numbers

Objective: learn about the square and triangular number patterns.

The dot arrays below represent the first four square numbers and the first four
triangular numbers. Complete the fifth and sixth sequences in each pattern and
then answer the following questions.

1. Describe the 10th square number.

2. How many dots are in each of the square arrays that represent the square
numbers? List the number of dots in a t-chart. What patterns do you see?

3. Describe the 10th triangular number. ,

4. How many dots are in each of the triangular arrays that represent the triangu-
lar numbers? List the number of dots in a t-chart. What patterns do you see?

¢ & & @
® @ @ e @ ©o @
e @ @ @ @ e @ & @
® e @ e & @ ® & @ @
1st square 2nd square 3rd square 4th square
number number number number
@
@ e @
L @ @ e @ @
® e @ e @ @ ® @ 0 @
Ist triangular  2nd triangular  3rd triangular  4th triangular
number number number number
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Things to Think About
Did you find that the 5th square number used 25 dots to make a 5-by-5 square
and that the 6th square number used 36 dots to make a 6-by-6 square? Thus,
the 10th square number is 100; 100 dots would be needed to make a 10-by-10
square. The square number pattern can be shown with dots in the form of square
arrays but is more commonly represented by the number of dots: 1, 4, 9, 16, 25,
36, 49, and so on. These numbers are sometimes presented in exponent form:
12, 22, 32, 42, 52, 62, 72, etc. The explicit rule for generalizing the square number
pattern is n?, where n stands for the term (e.g., the 8th square number is 82, or
64). The second power (e.g., 6?) of a number is often referred to as the number
“squared” (6 squared equals 36), because that number of dots can be repre-
sented as a square.

Other interesting patterns are found in moving from one square number to the
next. Notice that two consecutive square numbers differ by an odd number of dots.

— = 4 = o e e e

1 (+3) 4 (+5 9 (+7) 16 (+9 25 (+11) 36
S | B et e e ok

€

This can be shown visually in the construction of squares.

® ]
s wle
1 1+3=4

In order to answer Question 3 it helps to examine the fifth and sixth figures in
the triangular numbers pattern. The fifth triangular number uses 15 dots to make
a right triangle, with 5 dots on the bottom row, 4 dots on the next row, 3 dots
above that, and then 2 dots and 1 dot respectively in the last two rows. The sixth
triangular number uses 21 dots.

[ ]

(-] ® @

e o e ® 9

® & @ ® @ © @

e & & @ ® @ © ® @

e @ ¢ & @ ® & @ @ ® ©

5th triangular number  6th triangular number

15 dots 21 dots

One way to make the 6th triangle in the triangular number pattern is to take the
fifth triangle and simply add a bottom row of 6 more dots. This approach can be
used to find the 10th triangular number. It is 55: 55 dots would be needed to
make the 10th triangle. The triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36,
45, 55, 66, 78, and so on.
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What patterns did you notice in how these triangular numbers grow? The sec-
ond triangle has 2 more dots than the first; the third triangle has 3 more dots
than the second; the fourth triangle has 4 more dots than the third. These same
patterns can be observed when looking at the numbers in the pattern.

TERM NUMBER NUMBER OF DOTS CHANGE
1 1 > +2
2 - +3
3 6
+4
4 10
> +5
5 15

There is a rule for determining any triangular number:

nin + 1)
2

where n represents the term in the triangular number pattern (e.g., to find the
third triangular number, substitute 3 into the rule

33+ 1) _12 “
2 2

or 6; the third triangular number is 6). A

While many pattérns can be categorized as repeating, arithmetic, geometric, or figu-
rate, there are also special patterns that do not fit into these classification schemes.
One of the most famous patterns is the Fibonacei sequence, which is made up of
Fibonacci numbers. Fibonacci was the nickname of Leonardo de Pisa, an Italian
mathematician (1175-1245); he is best known for the sequence of numbers that
bears his name. The Fibonacci sequence of numbers begins with two numbers: 1, 1.
Each new number is then found by adding the two preceding numbers:

1,1,2,3,5,8,13,21, 34,55,89, 144, . ...

Mathematicians have identified many interesting relationships among the
Fibonacci numbers. For example, the sum of the first three Fibonacci numbers (1 +
1 4+ 2 = 4) is one less than the fifth number (5). The sum of the first four Fibonacci
numbers (1 + 1 + 2 + 3 = 7) is one less than the sixth number (8). Find the sum of
the first five Fibonacci numbers. Did the relationship hold? Yes, the sum of the furst

five Fibonacci numbers is 12, which is one less than the seventh Fibonacci numbet.
The Fibonacci numbers describe a variety of phenomena in art, music, and nature.
: The numbers of spirals on most pinecones and pineapples are Fibonacci numbers.
The arrangement of leaves or branches on the stems of many plants are Fibonacci
; numbers. On a piano, the number of white (8) keys and black (5) keys in each oc-
: tave (13) are all Fibonacci numbers. The center of a sunflower has clockwise and
counterclockwise spirals, and these spirals tend to be consecutive Fibonacci num-
i bers. The lengths and widths of many rectangular objects such as index cards, win- =
dows, playing cards, and light-switch plates are consecutive Fibonacci numbers. |

LSRR
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Activity

natural occurrences of Fibonacci numbers

Fibonacci ratios are comparisons of two Fibonacci numbers, usually adjacent num-
bers in the sequence. These ratios are often expressed as decimals by dividing one
number in the ratio by the other. As the numbers in the Fibonacci sequence in-
crease, the ratios tend to approximate 1.618 (8/5 = 1.6, 55/34 = 1.6176, 233/144 =
1.61805). This special ratio (1.618034 . .. ) is an irrational number (see Chapter 1,
pdge 5) that occurs in many other shapes and objects. It is known as ¢ (phi) by
mathematicians, and was labeled the golden ratio by the ancient Greeks. (People also
call it the golden proportion.) It has been known and used for thousands of years—it is
believed that it was a factor in the construction of some of the pyramids in Egypt.
Rectangles whose length-to-width ratios approximate the golden ratio are called
golden rectangles. Psychologists have found that people prefer golden rectangles to
other rectangles; thus common objects such as cereal boxes and picture frames tend
to have dimensions with a ratio of around 1.6. Which of the rectangles below do you
find to be most aesthetically pleasing? Two are golden rectangles; you can check by
measuring the lengths and widths and calculating the ratios.

7

~~

W

Fibonacci Numbers and You

Objective: investigate the occurrence of the golden ratio in the human body.

The human body is characterized by golden proportions, and these ratios have
been used to draw figures accurately for centuries. Make the following measure-
ments (use either inches or centimeters) and calculate the designated ratios. Can
you find other golden ratios besides the ones mentioned?

A Your height compared with the distance from the floor to your navel.

A The distance from the floor to your navel compared with the distance from

the floor to your kneecap.
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A The length of your arm from the shoulder compared with the distance from
your fingertips to your elbow.

A The distance from your chin to the center of your eyes compared with the dis-
tance from your chin to the tip of your nose.

A The length of your index finger compared with the distance from your index
fingertip to the big knuckle.

Things to Think About
One way to represent these ratios is as decimals. If your height is 68 inches and
the distance from the floor to your navel is 42 inches, the ratio is 68 to 42 or
1.619 to 1 (68 + 42). This is very close to the golden ratio! You may instead have
calculated a ratio of 1.7 or 1.5—not all individual proportions are exactly golden
ratios. Some of us have long legs or arms compared with our overall heights.
However, on average, the ratios will be close. Did you find other occurrences of
the golden ratio? There are many other comparisons that produce the golden ra-
; tio, especially within the face and hands.
; The golden ratio is more precisely defined as the cut in a line segment such
that the ratio of the whole segment to the longer part is the same as the ratio of
the longer part to the shorter part.

A B G

&R
BE

Thus, when we take body measurements, we are comparigg a long section of the
body to a shorter part. A

The relationship between Fibonacci ratios and the golden ratio is a curious phenom-
enon and has been the subject of study for generations. As a pattern, the Fibonacci
sequence is an important one to know. Students benefit not only from identifying oc-
currences of the numbers in the pattern in nature but also from understanding the
connection to the golden ratio. The golden ratio has been used in the design of many
buildings (the Parthenon in Greece) and in the art of Leonardo da Vinci and Piet

it Mondrian.

5. Representation

Another important concept in algebra (and in mathematics in general) is
representation—the display of mathematical relationships graphically, symbolically,
pictorially, or verbally. Graphical representations include a variety of graphs—bar
graphs, line graphs, histograms, line plots, and circle graphs (see Chapter 13 for
additional information). Symbolic representations involve the use of symbols and
include equations, formulas, and rules. Pictorial representations such as two- and
three-dimensional drawings, maps, balance scales, and scale drawings are used in
almost all areas of mathematics but especially geometry (see Chapters 10 and 11).
Finally, relationships can also be expressed in words, either written or spoken. The
situations you have been reasoning about in this chapter have been represented
pictorially, symbolically, and verbally. Likewise, students need to create and match
it different representations in order to extend and deepen their understanding of

i relationships. -
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Representing Relationships in Problems

Objective: represent an algebraic relationship using a graph, table, and
equation.

Generate the data needed to solve the following problem and organize the infor-
mation into a table. Graph the data for each plan on a coordinate grid. Write
equations to represent the relationships in each plan.

The Relax and Listen CD Club offers new members two plans from which to
choose. Plan 1: Each CD costs $10.00. Plan 2: The first two CDs are free,
and each additional CD costs $12.00. You are a big music fan and want to
become a member of the Relax and Listen CD Club. Which plan would you

choose? Explain.

Things to Think About

Tables are a way of showing sets of data. In this problem you can set up a table
that compares number of CDs and total cost For each plan. By listing the number
of CDs in a systematic way, along with the corresponding cost, you can solve the
problem and answer the question.

How many CDs should you include in the table? five? ten? twenty? In order
to decide which plan is better for you, you have to find which quantity of CDs
will cost the same under either plan. The table below shows that if you buy
12 CDs, you will spend the same amount under plan 1 and plan 2. This is often
referred to as the “break even” point. If you plan to buy more than 12 CDs, plan
1 is the better choice. If you plan to buy fewer than 12 CDs, plan 2 is more

economical.

NUMBER OF CDS TOTAL COST FOR PLAN 1 TOTAL COST FOR PLAN 2
1 $10 0
-
2 $20 0
3 $30 512
4 $40 $24
11 5110 $108
12 $120 $120
13 $130 $132

What are the benefits of using tables of data to solve problems? Working with
numbers in an organized way often helps students note patterns. Having calcu-
lated numerous costs for plans 1 and 2, students will be able to cite specific ex-
amples. You can then help them link the specific examples to general statements
about the relationships in the plans. For example:

Student: Plan 1 went from $10, to $20, to $30, up to over $100.
Teacher: Can you describe what’s happening in more general terms?
Student: Well, the cost increases $10 every time you buy another CD.
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How can we generalize the relationship in each plan with a rule? Plan 1 in-
creases steadily by $10 with each CD; therefore, if n equals the number of CDs,
the cost of plan 1 is 10n dollars. Plan 2 increases steadily by $12; but two CDs
are free: therefore, if n equals the number of CDs, the cost of plan 2 is 12(n — 2)
dollars. To find the break-even point symbolically, we create a mathematical
expression in which the two rules are set equal to each other: 10n = 12(n — 2).

Comparison of Two Music Club Plans
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The solution to this equation is the number of CDs you can buy and spend the
same amount under either plan:
10n = 12(n — 2)
10n = 12n — 24
~2n = "24
n=12

Often rules or equations use x and y to represent the variables so that the
equations can be more easily graphed. The equation for plan 1is 10x = y and for
plan 2 is 12(x — 2) =y, where x is the number of CDs and y is the cost in dollars.

A graph will also show the relationship between the two plans. The title of the
graph provides us with important information, as do the labels on each set of
axes. (See page 216.)

The set of square points (plan 1) starts at the origin, or the (0,0) coordinate,
and is plotted next at (1,10). This means that the cost of zero CDs is zero dollars
and the cost of one CD is $10. The set of round points (plan 2} starts at the co-
ordinate (2,0) and is plotted next at (3,12). This means that the cost of two CDs
is zero dollars and the cost of 3 CDs is $12.

. Why are the points on the graph not connected into lines? The data in this
problem are discrete or countable data (see page 277 in Chapter 12 for more
information): whole number values for CDs make sense, fractional numbers of
CDs (e.g., three and a half) do not make sense. We cannot connect the points,
because the values between whole numbers of CDs have no meaning. However,
we can plot these points on a line graph because we are examing two different
variables—number of CDs and cost.

The intersection point on the graph represents the break-even point, the point
at which the two plans are equal. Notice that the points for plan 2 form a
steeper incline than those for plan 1. However, because the points don't start at
the same coordinate, it appears that plan 1 is steeper at the start. The steepness,
or the slope, of incline provides us with information about the rate of change (in
th[s\ case, the changing cost) between points. The steeper the incline, the greater
the amount of change (dollars here) between values. A

Even though the information and relationships in a math problem can be expressed
using prose, tables, equations, and graphs, one representation is sometimes easier to
use than another or provides us with different insights into a problem. How would

you represent the information in the following problem in order to solve it?

For their checking accounts, the Thrifty Bank charges $4.50 per month and $0.25
per check. The Fast Bank charges a flat rate of $0.50 per check for their checking ac-
counts, with no additional monthly fee. How many checks must a person write to
make the Fast Bank checking account the more economical plan?

The specific context of a problem can either contribute to or distract from an in-
dividual’s ability to make sense of it. If we don’t know how a checking account
works, for example, we would need some background information before being able
to proceed with this problem. Whenever we are unfamiliar with a context, it often
helps to organize the data in a table. As we determine the data that belong in the
table, we become more familiar with the specifics of the problem. Then we may
represent the numerical information for cach bank’s plan as points on a graph.
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The place at which the two points overlap (18 checks) is the break-even point—for
this number of checks, each account costs the same amount. If a person writes fewer
than 18 checks a month, Fast Bank’s plan is more economical. If he or she writes
more than 18 checks a month, Thrifty Bank’s is.

Comparison of Bank Fees
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We could also represent the problem with equations: Thrifty Bank, y = .25x + 4.50;
Fast Bank, y = .50x, where x represents the number of checks and y represents the
cost of the account in dollars. Setting the two equations equal to each other, we can
then solve for x algebraically:
50x = .25x + 4.50 {
25x% = 4.50
x =18 E
| Teaching Algebra
b While algebra used to be a subject reserved only for students going to college or those

] interested in advanced study, today we realize that algebraic reasoning is central to
many other subjects and vocations. School systems throughout the country are requir-
ing that all students take algebra. The National Council of Teachers of Mathematics
has recommended that algebra be a curricular strand in kindergarten through grade 12
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mathematics (NCTM 2000). If students have had algebraic experiences before they
encounter algebra as a course in middle or high school, they will more easily make the
transition from reasoning about number to reasoning about symbols and relationships.
In the early elementary grades, studying patterns is the most prominent algebraic ex-
perience; patterns are the basis for reasoning about regularity and consistency. As stu-
dents move into the upper elementary and middle grades, they need to generalize
these patterns and express the relationships in a variety of ways. Students learn to use
language, tables, and graphs to represent relationships and to formalize them using
funcrion rules and equations. At all levels, it is important to ask students to justify
their statements using pictures, examples, and reasoning.

Questions for Discussion

1. Examine a texthook and find examples of where students are asked to reason
algebraically. Explain the mathematical purpose of the activities.
2. Compare and contrast how variables are used.
« 3. Some people think that algebra is too complex a topic to teach to young

children. What do you think? Support your statements.
4. Patterns are a major topic in mathematics. Describe the different types of
patterns and describe one instructional activity that you could use to have

students explore each pattern type.
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